This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193909 #5 Mar 30 2012 18:57:39 %S A193909 1,1,2,3,6,8,6,12,20,24,11,22,40,64,80,19,38,72,128,208,256,32,64,124, %T A193909 232,416,672,832,53,106,208,400,752,1344,2176,2688,87,174,344,672, %U A193909 1296,2432,4352,7040,8704,142,284,564,1112,2176,4192,7872,14080,22784 %N A193909 Mirror of the triangle A193908. %C A193909 A193909 is obtained by reversing the rows of the triangle A193908. %F A193909 Write w(n,k) for the triangle at A193908. The triangle at A193909 is then given by w(n,n-k). %e A193909 First six rows: %e A193909 1 %e A193909 1....2 %e A193909 3....6....8 %e A193909 6....12...20...24 %e A193909 11...22...40...64....80 %e A193909 19...38...72...128...208...256 %t A193909 z = 12; %t A193909 p[n_, x_] := Sum[Fibonacci[k + 2]*x^(n - k), {k, 0, n}]; %t A193909 q[n_, x_] := 2 x*q[n - 1, x] + 1 ; q[0, x_] := 1; %t A193909 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193909 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193909 g[n_] := CoefficientList[w[n, x], {x}] %t A193909 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193909 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193908 *) %t A193909 TableForm[Table[g[n], {n, -1, z}]] %t A193909 Flatten[Table[g[n], {n, -1, z}]] (* A193909 *) %Y A193909 Cf. A193908. %K A193909 nonn,tabl %O A193909 0,3 %A A193909 _Clark Kimberling_, Aug 09 2011