cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193915 Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=2x*q(n-1,x)+1 with q(0,x)=1.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 16, 12, 8, 4, 48, 40, 24, 14, 7, 160, 128, 80, 44, 24, 12, 512, 416, 256, 144, 76, 40, 20, 1664, 1344, 832, 464, 248, 128, 66, 33, 5376, 4352, 2688, 1504, 800, 416, 212, 108, 54, 17408, 14080, 8704, 4864, 2592, 1344, 688, 348, 176, 88
Offset: 0

Views

Author

Clark Kimberling, Aug 09 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First five rows of Q:
1
2....1
4....2...1
8....4...2...1
16...8...4...2...1

Examples

			First six rows:
1
2....1
4....4....2
16...12...8...4
48...40...24..14..7
160..128..80..44..24..12
		

Crossrefs

Programs

  • Mathematica
    z = 12;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := 2 x*q[n - 1, x] + 1 ; q[0, x_] := 1;
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193915 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193916 *)
Showing 1-1 of 1 results.