This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193924 #5 Mar 30 2012 18:57:39 %S A193924 1,1,1,3,2,1,8,5,3,1,21,13,8,4,1,55,34,21,12,5,1,144,89,55,33,17,6,1, %T A193924 377,233,144,88,50,23,7,1,987,610,377,232,138,73,30,8,1,2584,1597,987, %U A193924 609,370,211,103,38,9,1,6765,4181,2584,1596,979,581,314,141,47 %N A193924 Mirror of the triangle A193923. %C A193924 A193924 is obtained by reversing the rows of the triangle A193923. %F A193924 Write w(n,k) for the triangle at A193923. The triangle at A193924 is then given by w(n,n-k). %e A193924 First six rows: %e A193924 1 %e A193924 1....1 %e A193924 3....2....1 %e A193924 8....5....3....1 %e A193924 21...13...8....4....1 %e A193924 55...34...21...12...5...1 %t A193924 p[n_, x_] := (x + 1)^n; %t A193924 q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; %t A193924 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193924 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193924 g[n_] := CoefficientList[w[n, x], {x}] %t A193924 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193924 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193923 *) %t A193924 TableForm[Table[g[n], {n, -1, z}]] %t A193924 Flatten[Table[g[n], {n, -1, z}]] (* A193924 *) %Y A193924 Cf. A193923. %K A193924 nonn,tabl %O A193924 0,4 %A A193924 _Clark Kimberling_, Aug 09 2011