This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193973 #24 Feb 15 2025 20:26:40 %S A193973 2,3,5,4,7,9,5,9,12,14,6,11,15,18,20,7,13,18,22,25,27,8,15,21,26,30, %T A193973 33,35,9,17,24,30,35,39,42,44,10,19,27,34,40,45,49,52,54,11,21,30,38, %U A193973 45,51,56,60,63,65,12,23,33,42,50,57,63,68,72,75,77,13,25,36,46 %N A193973 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=x*p(n-1,x)+n+1 with p(0,x)=1, and q(n,x)=x*p(n-1,x)+1 with p(0,x)=1. %C A193973 See A193842 for the definition of fission of two sequences of polynomials or triangular arrays. %C A193973 This array show the differences of the sequence of triangular numbers (A000217); viz., row n consists of t(n) - t(n-k) for k=1..n-1. - _Clark Kimberling_, Apr 15 2017 %H A193973 Clark Kimberling, <a href="/A193973/b193973.txt">Table of n, a(n) for n = 0..10000</a> %F A193973 T(n, k) = A000217(n + 2) - A000217(n + 1 - k), 0 <= k <= n. - _Georg Fischer_, May 03 2022 %e A193973 First six rows: %e A193973 2; %e A193973 3, 5; %e A193973 4, 7, 9; %e A193973 5, 9, 12, 14; %e A193973 6, 11, 15, 18, 20; %e A193973 7, 13, 18, 22, 25, 27; %e A193973 ... %p A193973 a000217 := proc(n) n*(n+1)/2 end: %p A193973 seq(print(seq(a000217(n+2) - a000217(n+1-k),k=0..n)),n=0..5); # _Georg Fischer_, May 03 2022 %t A193973 z = 13; %t A193973 p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 1; %t A193973 q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1; %t A193973 p1[n_, k_] := Coefficient[p[n, x], x^k]; %t A193973 p1[n_, 0] := p[n, x] /. x -> 0; %t A193973 d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] %t A193973 h[n_] := CoefficientList[d[n, x], {x}] %t A193973 TableForm[Table[Reverse[h[n]], {n, 0, z}]] %t A193973 Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193973 *) %t A193973 TableForm[Table[h[n], {n, 0, z}]] %t A193973 Flatten[Table[h[n], {n, -1, z}]] (* A193974 *) %Y A193973 Cf. A000217, A193664, A193842, A193974. %K A193973 nonn,tabl,easy %O A193973 0,1 %A A193973 _Clark Kimberling_, Aug 10 2011