A283115 Number of nonequivalent ways (mod D_3) to place 4 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.
0, 0, 0, 0, 0, 3, 40, 242, 1038, 3504, 9998, 25158, 57410, 121023, 239148, 447552, 799764, 1373400, 2278290, 3666036, 5742396, 8781111, 13141326, 19287246, 27811906, 39463424, 55177122, 76109826, 103681214, 139618479, 186008654, 245354424, 320640264, 415401264
Offset: 1
Examples
There are a(6) = 3 ways to place 4 points on an 6 X 6 X 6 grid, rotations and reflections ignored: . X . . X . . X . . . . . . . . . X . . X . . . X . . . . . X . . . . . X . . . . X . . . . . . X . . . . . X . . . . . X . .
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,0,6,8,-12,-9,13,6,-6,-13,9,12,-8,-6,0,6,0,-3,1).
Programs
-
Mathematica
Table[(5 n^8 - 100 n^7 + 810 n^6 - 3336 n^5 + 6940 n^4 - 5120 n^3 - 4080 n^2 + 6336 n)/11520 + Boole[OddQ@ n] (4 n^3 - 38 n^2 + 144 n - 207)/768 + Boole[Mod[n, 3] == 1] (n^2 - 6 n + 8)/18 - Boole[Mod[n, 6] == 1]/6, {n, 34}] (* or *) Rest@ CoefficientList[Series[x^6*(3 + 31 x + 122 x^2 + 330 x^3 + 630 x^4 + 920 x^5 + 1128 x^6 + 1224 x^7 + 1124 x^8 + 924 x^9 + 644 x^10 + 336 x^11 + 117 x^12 + 27 x^13)/((1 - x)^9*(1 + x)^4*(1 - x + x^2) (1 + x + x^2)^3), {x, 0, 34}], x] (* Michael De Vlieger, Mar 01 2017 *)
-
PARI
concat(vector(5), Vec(x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Mar 01 2017
Formula
a(n) = (5*n^8 - 100*n^7 + 810*n^6 - 3336*n^5 + 6940*n^4 - 5120*n^3 - 4080*n^2 + 6336*n)/11520 + IF(MOD(n, 2) = 1, 4*n^3 - 38*n^2 + 144*n - 207)/768 + IF(MOD(n, 3) = 1, n^2 - 6*n + 8)/18 + IF(MOD(n, 6) = 1, -1)/6.
G.f.: x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 01 2017
Comments