cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193983 Number of ways to arrange 5 nonattacking triangular rooks on an n X n X n triangular grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 270, 3195, 21273, 101484, 386052, 1243899, 3527469, 9035376, 21297492, 46838142, 97131762, 191517192, 361427508, 656353494, 1152094086, 1961910990, 3251400894, 5257953789, 8315944731, 12888836064, 19609755396
Offset: 1

Views

Author

R. H. Hardin Aug 10 2011

Keywords

Examples

			Some solutions for 7 X 7 X 7
........0..............0..............0..............0..............0
.......0.0............0.0............0.0............0.0............0.0
......0.1.0..........0.1.0..........0.0.1..........1.0.0..........0.0.1
.....1.0.0.0........0.0.0.1........1.0.0.0........0.0.0.1........0.1.0.0
....0.0.0.0.1......1.0.0.0.0......0.0.0.1.0......0.1.0.0.0......1.0.0.0.0
...0.0.0.1.0.0....0.0.1.0.0.0....0.1.0.0.0.0....0.0.0.0.1.0....0.0.0.0.1.0
..0.0.1.0.0.0.0..0.0.0.0.1.0.0..0.0.0.0.1.0.0..0.0.1.0.0.0.0..0.0.0.1.0.0.0
		

Crossrefs

Column 5 of A193986.

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) -14*a(n-3) +30*a(n-4) +6*a(n-5) -50*a(n-6) +10*a(n-7) +44*a(n-8) -44*a(n-10) -10*a(n-11) +50*a(n-12) -6*a(n-13) -30*a(n-14) +14*a(n-15) +5*a(n-16) -5*a(n-17) +a(n-18).
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -3*x^7*(2 + 80*x + 625*x^2 + 2244*x^3 + 4898*x^4 + 7197*x^5 + 7237*x^6 + 5030*x^7 + 2294*x^8 + 633*x^9)/((-1+x)^11*(1+x)^5*(1+x+x^2)).
Empirical: a(n) = 3461*n/320 - 469*n^2/240 - 469*n^3/15 + 2383*n^4/64 - 76607*n^5/3840 + 23693*n^6/3840 - 2263*n^7/1920 + 53*n^8/384 - 7*n^9/768 + n^10/3840 + 4/3*floor(n/3) + (1359/32 - 247*n/8 + 245*n^2/32 - 13*n^3/16 + n^4/32)*floor(n/2) - 4/3*floor((1 + n)/3).
(End)