A193983 Number of ways to arrange 5 nonattacking triangular rooks on an n X n X n triangular grid.
0, 0, 0, 0, 0, 0, 6, 270, 3195, 21273, 101484, 386052, 1243899, 3527469, 9035376, 21297492, 46838142, 97131762, 191517192, 361427508, 656353494, 1152094086, 1961910990, 3251400894, 5257953789, 8315944731, 12888836064, 19609755396
Offset: 1
Keywords
Examples
Some solutions for 7 X 7 X 7 ........0..............0..............0..............0..............0 .......0.0............0.0............0.0............0.0............0.0 ......0.1.0..........0.1.0..........0.0.1..........1.0.0..........0.0.1 .....1.0.0.0........0.0.0.1........1.0.0.0........0.0.0.1........0.1.0.0 ....0.0.0.0.1......1.0.0.0.0......0.0.0.1.0......0.1.0.0.0......1.0.0.0.0 ...0.0.0.1.0.0....0.0.1.0.0.0....0.1.0.0.0.0....0.0.0.0.1.0....0.0.0.0.1.0 ..0.0.1.0.0.0.0..0.0.0.0.1.0.0..0.0.0.0.1.0.0..0.0.1.0.0.0.0..0.0.0.1.0.0.0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..52
- Christopher R. H. Hanusa, Thomas Zaslavsky, A q-queens problem. VII. Combinatorial types of nonattacking chess riders, arXiv:1906.08981 [math.CO], 2019.
Crossrefs
Column 5 of A193986.
Formula
Empirical: a(n) = 5*a(n-1) -5*a(n-2) -14*a(n-3) +30*a(n-4) +6*a(n-5) -50*a(n-6) +10*a(n-7) +44*a(n-8) -44*a(n-10) -10*a(n-11) +50*a(n-12) -6*a(n-13) -30*a(n-14) +14*a(n-15) +5*a(n-16) -5*a(n-17) +a(n-18).
Contribution from Vaclav Kotesovec, Aug 31 2012: (Start)
Empirical: G.f.: -3*x^7*(2 + 80*x + 625*x^2 + 2244*x^3 + 4898*x^4 + 7197*x^5 + 7237*x^6 + 5030*x^7 + 2294*x^8 + 633*x^9)/((-1+x)^11*(1+x)^5*(1+x+x^2)).
Empirical: a(n) = 3461*n/320 - 469*n^2/240 - 469*n^3/15 + 2383*n^4/64 - 76607*n^5/3840 + 23693*n^6/3840 - 2263*n^7/1920 + 53*n^8/384 - 7*n^9/768 + n^10/3840 + 4/3*floor(n/3) + (1359/32 - 247*n/8 + 245*n^2/32 - 13*n^3/16 + n^4/32)*floor(n/2) - 4/3*floor((1 + n)/3).
(End)