This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193997 #8 Dec 26 2023 09:54:00 %S A193997 1,2,3,3,8,6,5,18,23,11,8,37,66,55,19,13,73,167,196,120,32,21,139,388, %T A193997 587,511,246,53,34,259,853,1578,1777,1225,484,87,55,474,1799,3933, %U A193997 5428,4857,2765,924,142,89,856,3678,9275,15147,16642,12333,5969 %N A193997 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers) and q(n,x)=(x+1)^n. %C A193997 See A193842 for the definition of the fission of P by Q, where P and Q are sequences of polynomials or triangular arrays (of coefficients of polynomials). %e A193997 First six rows: %e A193997 1 %e A193997 2....3 %e A193997 3....8....6 %e A193997 5....18...23....11 %e A193997 8....37...66....55....19 %e A193997 13...73...167...196...120...32 %t A193997 z = 11; %t A193997 p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; %t A193997 q[n_, x_] := (x + 1)^n; %t A193997 p1[n_, k_] := Coefficient[p[n, x], x^k]; %t A193997 p1[n_, 0] := p[n, x] /. x -> 0; %t A193997 d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] %t A193997 h[n_] := CoefficientList[d[n, x], {x}] %t A193997 TableForm[Table[Reverse[h[n]], {n, 0, z}]] %t A193997 Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193997 *) %t A193997 TableForm[Table[h[n], {n, 0, z}]] %t A193997 Flatten[Table[h[n], {n, -1, z}]] (* A193998 *) %Y A193997 Cf. A193842, A193998. %K A193997 nonn,tabl %O A193997 0,2 %A A193997 _Clark Kimberling_, Aug 11 2011