A328016 Numbers k such that k, k+1, ... k+6 are all cubefree (A004709).
1, 9, 17, 33, 41, 57, 65, 73, 89, 97, 113, 137, 145, 153, 169, 177, 193, 201, 209, 217, 225, 233, 257, 273, 281, 289, 305, 313, 329, 353, 361, 385, 393, 409, 417, 425, 433, 441, 449, 465, 473, 489, 505, 521, 529, 545, 553, 569, 577, 585, 601, 609, 633, 641, 649, 657
Offset: 1
Examples
9 is in the sequence since the numbers 9, 10, ... 15 are all cubefree.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Leon Mirsky, Arithmetical pattern problems relating to divisibility by rth powers, Proceedings of the London Mathematical Society, Vol. s2-50, No. 1 (1949), pp. 497-508.
Programs
-
Mathematica
cubeFreeQ[n_] := FreeQ[FactorInteger[n], {, k /; k > 2}]; aQ[n_] := AllTrue[n + Range[0, 6], cubeFreeQ]; Select[Range[650], aQ]
Comments