cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194025 Number of fixed points under iteration of sum of cubes of digits in base b.

This page as a plain text file.
%I A194025 #56 Jan 05 2025 19:51:39
%S A194025 1,2,9,3,4,7,6,8,5,8,5,5,3,3,24,3,2,9,2,3,16,5,2,20,2,2,7,9,3,14,2,6,
%T A194025 8,4,10,12,2,8,8,7,2,12,4,5,17,5,4,27,6,5,10,4,2,11,9,5,9,6,3,25,5,6,
%U A194025 24,5,4,17,5,5,9,10,1,15,4,3,13,3,5,19,4,13,7
%N A194025 Number of fixed points under iteration of sum of cubes of digits in base b.
%C A194025 If b >= 2 and n >= 2*b^3, then S(n,3,b) < n. For each positive integer n, there is a positive integer m such that S^m(n,3,b) < 2*b^3. (Grundman/Teeple, 2001, Lemma 8 and Corollary 9.)
%C A194025 From _Christian N. K. Anderson_, May 23 2013: (Start)
%C A194025 1 is considered a fixed point in all bases, 0 is not.
%C A194025 In order for a number with d digits in base n to be a fixed point, it must satisfy the condition d*(n-1)^3 < n^d, which can only occur when d < 4 for n > 2. Because all binary numbers are "happy" (become 1 under iteration), there are no fixed points with more than 4 digits in any base. It can further be demonstrated that all 4-digit solutions begin with 1 in base n.
%C A194025 Unlike the number of fixed points under iteration of sum of squares of digits (A193583), this sequence contains many even numbers, and its histogram converges to a smooth distribution (approximately gamma(2.64,2.8); see "histogram" in links). (End)
%H A194025 Christian N. K. Anderson, <a href="/A194025/b194025.txt">Table of n, a(n) for n = 2..1000</a>
%H A194025 Christian N. K. Anderson, <a href="/A194025/a194025.gif">Histogram of a(n)</a>
%H A194025 H. G. Grundman and E. A. Teeple, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/39-5/grundman.pdf">Generalized Happy Numbers</a>, Fibonacci Quarterly 39 (2001), nr. 5, p. 462-466.
%e A194025 In the decimal system all integers go to (1); (153); (370); (371); (407) or (55, 250,133); (136, 244); (160, 217, 352); (919, 1459) under the iteration of sum of cubes of digits, hence there are five fixed points, two 2-cycles and two 3-cycles. Therefore a(10) = 5.
%p A194025 S:=proc(n,p,b) local Q,k,N,z; Q:=[n]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p,'i'=1..nops(N)),base,b); if not member(z,Q) then Q:=[op(Q),z]; else Q:=[op(Q),z]; break; fi; od; return Q; end:
%p A194025 a:=proc(b) local F,i,A,Q,B,C; A:=[]: for i from 1 to 2*b^3 do Q:=S(convert(i,base,b),3,b); A:={op(A),Q[nops(Q)]}; od: F:={}: for i from 1 while nops(A)>0 do B:=S(A[1],3,b); C:=[seq(B[i],i=1..nops(B)-1)]: if nops(C)=1 then F:={op(F),op(C)}: fi: A:=A minus {op(B)}; od: return(nops(F)); end:
%p A194025 # _Martin Renner_, Aug 24 2011
%o A194025 (Sage)
%o A194025 def A194025(n):
%o A194025     # inefficient but straightforward
%o A194025     return len([i for i in (1..2*n**3) if i==sum(d**3 for d in i.digits(base=n))]) # _D. S. McNeil_, Aug 23 2011
%o A194025 (R) #See A226026 for an optimized version
%o A194025 inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }; yn=rep(NA, 30)
%o A194025 for(b in 2:30) yn[b]=sum(sapply(1:(2*b^3), function(x) sum(inbase(x, b)^3))==1:(2*b^3)); yn # _Christian N. K. Anderson_, Jun 08 2013
%Y A194025 Cf. A193594, A194281.
%Y A194025 Solutions for a(10): A046197.
%Y A194025 Largest of the a(n) fixed points: A226026.
%Y A194025 Related sequences for sum of squared digits: A193583, A209242.
%K A194025 nonn,base
%O A194025 2,2
%A A194025 _Martin Renner_, Aug 22 2011