cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194029 Natural fractal sequence of the Fibonacci sequence (1, 2, 3, 5, 8, ...).

This page as a plain text file.
%I A194029 #67 Dec 11 2024 15:32:15
%S A194029 1,1,1,2,1,2,3,1,2,3,4,5,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,9,10,11,12,
%T A194029 13,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,1,2,3,4,5,6,
%U A194029 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34
%N A194029 Natural fractal sequence of the Fibonacci sequence (1, 2, 3, 5, 8, ...).
%C A194029 Suppose that c(1), c(2), c(3), ... is an increasing sequence of positive integers with c(1) = 1, and that the sequence c(k+1) - c(k) is strictly increasing. The natural fractal sequence f of c is defined by:
%C A194029   If c(k) <= n < c(k+1), then f(n) = 1 + n - c(k).
%C A194029 This defines the present sequence a(n) = f(n) for c = A000045.
%C A194029 The natural interspersion of c is here introduced as the array given by T(n,k) =(position of k-th n in f).  Note that c = (row 1 of T).
%C A194029 As a different example from the one considered here (c = A000045), let c = A000217 = (1, 3, 6, 10, 15, ...), the triangular numbers, so that f = (1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...) = A002260, and a northwest corner of T = A194029 is:
%C A194029                     1   3   6  10  15  ...
%C A194029                     2   4   7  11  16  ...
%C A194029                     5   8  12  17  23  ...
%C A194029                     9  13  18  24  31  ...
%C A194029                    ...
%C A194029 Since every number in the set N of positive integers occurs exactly once in this (and every) interspersion, a listing of the terms of T by antidiagonals comprises a permutation, p, of N; letting q denote the inverse of p, we thus have for each c a fractal sequence, an interspersion T, and two permutations of N:
%C A194029        c         f       T / p       q
%C A194029     A000045   A194029   A194030   A194031
%C A194029     A000290   A071797   A194032   A194033
%C A194029     A000217   A002260   A066182   A066181
%C A194029     A028387   A074294   A194034   A194035
%C A194029     A028872   A071797   A194036   A194037
%C A194029     A034856   A002260   A194038   A194040
%C A194029 It appears that this is also a triangle read by rows in which row n lists the first A000045(n) positive integers, n >= 1 (see example). - _Omar E. Pol_, May 28 2012
%C A194029 This is true, because the sequence c = A000045 has the property that c(k+1)  - c(k) = c(k-1), so the number of integers {1, 2, 3, ...} to be filled in from index n = c(k) to n = c(k+1)-1 is equal to c(k-1); see also the first EXAMPLE. - _M. F. Hasler_, Apr 23 2022
%D A194029 Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.
%H A194029 Alois P. Heinz, <a href="/A194029/b194029.txt">Rows n = 1..20, flattened</a>
%H A194029 Clark Kimberling, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7321.pdf">Numeration systems and fractal sequences</a>, Acta Arithmetica 73 (1995) 103-117.
%F A194029 a(n) = A066628(n)+1. - _Alan Michael Gómez Calderón_, Oct 30 2023
%e A194029 The sequence (1, 2, 3, 5, 8, 13, ...) is used to place '1's in positions numbered 1, 2, 3, 5, 8, 13, ...  Then gaps are filled in with consecutive counting numbers:
%e A194029   1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 5, 1, ...
%e A194029 From _Omar E. Pol_, May 28 2012: (Start)
%e A194029 Written as an irregular triangle the sequence begins:
%e A194029   1;
%e A194029   1;
%e A194029   1, 2;
%e A194029   1, 2, 3;
%e A194029   1, 2, 3, 4, 5;
%e A194029   1, 2, 3, 4, 5, 6, 7, 8;
%e A194029   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13;
%e A194029   1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21; ...
%e A194029 The row lengths are A000045(n).
%e A194029 (End)
%p A194029 T:= n-> $1..(<<0|1>, <1|1>>^n)[1, 2]:
%p A194029 seq(T(n), n=1..10);  # _Alois P. Heinz_, Dec 11 2024
%t A194029 z = 40;
%t A194029 c[k_] := Fibonacci[k + 1];
%t A194029 c = Table[c[k], {k, 1, z}]  (* A000045 *)
%t A194029 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
%t A194029 f = Table[f[n], {n, 1, 800}]  (* A194029 *)
%t A194029 r[n_] := Flatten[Position[f, n]]
%t A194029 t[n_, k_] := r[n][[k]]
%t A194029 TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]]
%t A194029 p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194030 *)
%t A194029 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]]  (* A194031 *)
%t A194029 Flatten[Range[Fibonacci[Range[66]]]] (* _Birkas Gyorgy_, Jun 30 2012 *)
%Y A194029 Cf. A000045 (Fibonacci numbers).
%Y A194029 Cf. A066628, A194030, A194031 (natural interspersion of A000045 and inverse permutation).
%Y A194029 Cf. A130853.
%K A194029 nonn,tabf
%O A194029 1,4
%A A194029 _Clark Kimberling_, Aug 12 2011
%E A194029 Edited by _M. F. Hasler_, Apr 23 2022