A194030 Natural interspersion of the Fibonacci sequence (1,2,3,5,8,...), a rectangular array, by antidiagonals.
1, 2, 4, 3, 6, 7, 5, 9, 10, 11, 8, 14, 15, 16, 12, 13, 22, 23, 24, 17, 18, 21, 35, 36, 37, 25, 26, 19, 34, 56, 57, 58, 38, 39, 27, 20, 55, 90, 91, 92, 59, 60, 40, 28, 29, 89, 145, 146, 147, 93, 94, 61, 41, 42, 30, 144, 234, 235, 236, 148, 149, 95, 62, 63, 43, 31
Offset: 1
Examples
Northwest corner: 1...2...3...5...8...13 4...6...9...14..22..35 7...10..15..23..36..57 11..16..24..37..58..92 12..17..25..38..59..93
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened).
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
z = 40; c[k_] := Fibonacci[k + 1]; c = Table[c[k], {k, 1, z}] (* A000045 *) f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] f = Table[f[n], {n, 1, 800}] (* A194029 *) r[n_] := Flatten[Position[f, n]] t[n_, k_] := r[n][[k]] TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]] p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194030 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194031 *) (* Second program: *) f[x_] := Block[{i = 1}, While[x > Fibonacci[i], i++]; i - 1]; Table[Fibonacci[f[k] + n - k + 1] + k - 1, {n, 2, 12}, {k, n - 1}] // Flatten (* Michael De Vlieger, May 17 2025 *)
Formula
T(n,k) = Fibonacci(A130233(n) + k - 1) + n - 1. - Michael De Vlieger, May 17 2025
Comments