This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194032 #21 Jul 08 2025 10:48:56 %S A194032 1,4,2,9,5,3,16,10,6,7,25,17,11,12,8,36,26,18,19,13,14,49,37,27,28,20, %T A194032 21,15,64,50,38,39,29,30,22,23,81,65,51,52,40,41,31,32,24,100,82,66, %U A194032 67,53,54,42,43,33,34,121,101,83,84,68,69,55,56,44,45 %N A194032 Natural interspersion of the squares (1,4,9,16,25,...), a rectangular array, by antidiagonals. %C A194032 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194032 is a permutation of the positive integers; its inverse is A194033. %H A194032 Zhuorui He, <a href="/A194032/b194032.txt">Table of n, a(n) for n = 1..11325</a> %F A194032 T(n, k) = (k + max(floor(n/2)-1,0))^2 + n - 1. - _Zhuorui He_, Jul 08 2025 %e A194032 Northwest corner: %e A194032 1...4...9...16...25 %e A194032 2...5...10..17...26 %e A194032 3...6...11..18...27 %e A194032 7...12..19..28...39 %e A194032 8...13..20..29...40 %t A194032 z = 30; %t A194032 c[k_] := k^2; %t A194032 c = Table[c[k], {k, 1, z}] (* A000290 *) %t A194032 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] (* A071797 *) %t A194032 f = Table[f[n], {n, 1, 255}] %t A194032 r[n_] := Flatten[Position[f, n]] %t A194032 t[n_, k_] := r[n][[k]] %t A194032 TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] %t A194032 p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194032 *) %t A194032 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194033 *) %Y A194032 Cf. A000290, A071797, A194033, A192872. %K A194032 nonn,easy,tabl %O A194032 1,2 %A A194032 _Clark Kimberling_, Aug 12 2011