This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194036 #5 Mar 30 2012 18:57:39 %S A194036 1,6,2,13,7,3,22,14,8,4,33,23,15,9,5,46,34,24,16,10,11,61,47,35,25,17, %T A194036 18,12,78,62,48,36,26,27,19,20,97,79,63,49,37,38,28,29,21,118,98,80, %U A194036 64,50,51,39,40,30,31,141,119,99,81,65,66,52,53,41,42,32,166,142 %N A194036 Natural interspersion of A028872, a rectangular array, by antidiagonals. %C A194036 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194036 is a permutation of the positive integers; its inverse is A194037. %e A194036 Northwest corner: %e A194036 1...6...13...22...33 %e A194036 2...7...14...23...34 %e A194036 3...8...15...24...35 %e A194036 4...9...16...25...36 %e A194036 5...10..17...26...37 %e A194036 11..18..27...38...51 %t A194036 z = 30; %t A194036 c[k_] := k^2 + 2 k - 2; %t A194036 c = Table[c[k], {k, 1, z}] (* A028872 *) %t A194036 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] %t A194036 f = Table[f[n], {n, 1, 255}] (* A071797 *) %t A194036 r[n_] := Flatten[Position[f, n]] %t A194036 t[n_, k_] := r[n][[k]] %t A194036 TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] %t A194036 p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194036 *) %t A194036 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194037 *) %Y A194036 Cf. A192872, A194037. %K A194036 nonn,tabl %O A194036 1,2 %A A194036 _Clark Kimberling_, Aug 12 2011