This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194038 #6 Mar 30 2012 18:57:39 %S A194038 1,4,2,8,5,3,13,9,6,7,19,14,10,11,12,26,20,15,16,17,18,34,27,21,22,23, %T A194038 24,25,43,35,28,29,30,31,32,33,53,44,36,37,38,39,40,41,42,64,54,45,46, %U A194038 47,48,49,50,51,52,76,65,55,56,57,58,59,60,61,62,63,89,77,66 %N A194038 Natural interspersion of A034856, a rectangular array, by antidiagonals. %C A194038 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194038 is a permutation of the positive integers; its inverse is A194040. %e A194038 Northwest corner: %e A194038 1...4...8...13...19 %e A194038 2...5...9...14...20 %e A194038 3...6...10..15...21 %e A194038 7...11..16..22...29 %e A194038 12..17..23..30...38 %t A194038 z = 30; %t A194038 c[k_] := (k^2 + 3 k - 2)/2; %t A194038 c = Table[c[k], {k, 1, z}] (* A034856 *) %t A194038 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] %t A194038 f = Table[f[n], {n, 1, 255}] (* essentially A002260 *) %t A194038 r[n_] := Flatten[Position[f, n]] %t A194038 t[n_, k_] := r[n][[k]] %t A194038 TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] %t A194038 p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194038 *) %t A194038 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194040 *) %Y A194038 Cf. A192872, A194040. %K A194038 nonn,tabl %O A194038 0,2 %A A194038 _Clark Kimberling_, Aug 12 2011