A194045 Numbers whose binary expansion is a preorder traversal of a binary tree.
0, 4, 20, 24, 84, 88, 100, 104, 112, 340, 344, 356, 360, 368, 404, 408, 420, 424, 432, 452, 456, 464, 480, 1364, 1368, 1380, 1384, 1392, 1428, 1432, 1444, 1448, 1456, 1476, 1480, 1488, 1504, 1620, 1624, 1636, 1640, 1648, 1684, 1688, 1700, 1704, 1712, 1732, 1736, 1744, 1760, 1812, 1816, 1828, 1832, 1840, 1860, 1864, 1872, 1888, 1924, 1928, 1936, 1952, 1984
Offset: 0
Keywords
Crossrefs
Cf. A000108.
Programs
-
JavaScript
// n is the number of internal nodes (or 1s in the binary expansion) // f is a function to display each result function trees(n, f) { // h is the "height", thinking of 1 as a step up and 0 as a step down // s is the current state function enumerate(n, h, s, f) { if (n===0 && h===0) { f(2 * s); } else { if (h > 0) { enumerate(n, h - 1, 2 * s, f) } if (n > 0) { enumerate(n - 1, h + 1, 2 * s + 1, f) } } } enumerate(n, 0, 0, f); }
Formula
a(n) = 4 * A057520(n). [Joerg Arndt, Sep 22 2012]
a(0)=0, a(n) = 2 * A014486(n) for n>=1. [Joerg Arndt, Sep 22 2012]
Comments