This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194051 #7 Mar 30 2012 18:57:39 %S A194051 1,2,3,5,6,4,9,10,7,8,16,17,11,12,13,27,28,18,19,20,14,45,46,29,30,31, %T A194051 21,15,74,75,47,48,49,32,22,23,121,122,76,77,78,50,33,34,24,197,198, %U A194051 123,124,125,79,51,52,35,25,320,321,199,200,201,126,80,81,53 %N A194051 Natural interspersion of A194050, a rectangular array, by antidiagonals. %C A194051 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194051 is a permutation of the positive integers; its inverse is A194052. %e A194051 Northwest corner: %e A194051 1...2...5...9...16 %e A194051 3...6...10..17..28 %e A194051 4...7...11..18..29 %e A194051 8...12..19..30..48 %e A194051 13..20..31..49..78 %t A194051 z = 50; %t A194051 c[k_] := LucasL[k + 1] - 2; %t A194051 c = Table[c[k], {k, 1, z}] (* A014739 *) %t A194051 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] %t A194051 f = Table[f[n], {n, 1, 600}] (* A194050 *) %t A194051 r[n_] := Flatten[Position[f, n]] %t A194051 t[n_, k_] := r[n][[k]] %t A194051 TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]] %t A194051 p = Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A194051 *) %t A194051 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 90}]] (* A194052 *) %Y A194051 Cf. A194029, A014739, A194050, A104052. %K A194051 nonn,tabl %O A194051 1,2 %A A194051 _Clark Kimberling_, Aug 13 2011