A194056 Natural interspersion of A000071(Fibonacci numbers minus 1), a rectangular array, by antidiagonals.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 11, 20, 21, 22, 23, 16, 17, 33, 34, 35, 36, 24, 25, 18, 54, 55, 56, 57, 37, 38, 26, 19, 88, 89, 90, 91, 58, 59, 39, 27, 28, 143, 144, 145, 146, 92, 93, 60, 40, 41, 29, 232, 233, 234, 235, 147, 148, 94, 61, 62, 42, 30
Offset: 1
Examples
Northwest corner: 1...2...4...7...12 3...5...8...13..21 6...9...14..22..35 10..15..23..36..57 11..16..24..37..58
Programs
-
Mathematica
z = 50; c[k_] := -1 + Fibonacci[k + 2] c = Table[c[k], {k, 1, z}] (* A000071, F(n+2)-1 *) f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] f = Table[f[n], {n, 1, 300}] (* A194055 *) r[n_] := Flatten[Position[f, n]] t[n_, k_] := r[n][[k]] TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] p = Flatten[Table[t[k, n - k + 1], {n, 1, 11}, {k, 1, n}]] (* A194056 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194057 *)
Comments