A194059 Natural interspersion of A001911 (Fibonacci numbers minus 2); a rectangular array, by antidiagonals.
1, 3, 2, 6, 4, 5, 11, 7, 8, 9, 19, 12, 13, 14, 10, 32, 20, 21, 22, 15, 16, 53, 33, 34, 35, 23, 24, 17, 87, 54, 55, 56, 36, 37, 25, 18, 142, 88, 89, 90, 57, 58, 38, 26, 27, 231, 143, 144, 145, 91, 92, 59, 39, 40, 28, 375, 232, 233, 234, 146, 147, 93, 60, 61, 41, 29
Offset: 1
Examples
Northwest corner: 1...3...6...11...19 2...4...7...12...30 5...8...13..21...34 9...14..22..35...56 10..15..23..36...57
Programs
-
Mathematica
z = 50; c[k_] := -2 + Fibonacci[k + 3]; c = Table[c[k], {k, 1, z}] (* A001911, F(n+3)-2 *) f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] f = Table[f[n], {n, 1, 700}] (* cf. A194055 *) r[n_] := Flatten[Position[f, n]] t[n_, k_] := r[n][[k]] TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] p = Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A194059 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 100}]] (* A194060 *)
Comments