This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194061 #5 Mar 30 2012 18:57:39 %S A194061 1,2,3,4,5,8,6,7,11,15,9,10,14,19,24,12,13,18,23,29,35,16,17,22,28,34, %T A194061 41,48,20,21,27,33,40,47,55,63,25,26,32,39,46,54,62,71,80,30,31,38,45, %U A194061 53,61,70,79,89,99,36,37,44,52,60,69,78,88,98,109,120 %N A194061 Natural interspersion of A002620; a rectangular array, by antidiagonals. %C A194061 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194061 is a permutation of the positive integers; its inverse is A194062. %e A194061 Northwest corner: %e A194061 1...2...4...6...9...12 %e A194061 3...5...7...10..13..17 %e A194061 8...11..14..18..22..27 %e A194061 15..19..23..28..33..39 %e A194061 24..29..34..40..46..53 %t A194061 z = 50; %t A194061 c[k_] := Floor[((k + 1)^2)/4]; %t A194061 c = Table[c[k], {k, 1, z}] (* A002620 *) %t A194061 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] %t A194061 f = Table[f[n], {n, 1, 400}] (* [A122197] *) %t A194061 r[n_] := Flatten[Position[f, n]] %t A194061 t[n_, k_] := r[n][[k]] %t A194061 TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] %t A194061 p = Flatten[ %t A194061 Table[t[k, n - k + 1], {n, 1, 11}, {k, 1, n}]] (* A194061 *) %t A194061 q[n_] := Position[p, n]; Flatten[ %t A194061 Table[q[n], {n, 1, 90}]] (* A194062 *) %Y A194061 Cf. A194029, A002620, A122197, A194062. %K A194061 nonn,tabl %O A194061 1,2 %A A194061 _Clark Kimberling_, Aug 14 2011