This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194075 #5 Mar 30 2012 18:57:39 %S A194075 1,4,2,7,5,3,13,8,6,10,19,14,9,16,11,28,20,15,22,17,12,37,29,21,31,23, %T A194075 18,25,49,38,30,40,32,24,34,26,61,50,39,52,41,33,43,35,27,76,62,51,64, %U A194075 53,42,55,44,36,46,91,77,63,79,65,54,67,56,45,58,47,109,92,78 %N A194075 Natural interspersion of A194073; a rectangular array, by antidiagonals. %C A194075 See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194075 is a permutation of the positive integers; its inverse is A194076. %e A194075 Northwest corner: %e A194075 1...4...7...13...19 %e A194075 2...5...8...14...20 %e A194075 3...6...9...15...21 %e A194075 10..16..22..31...40 %e A194075 11..17..23..32...41 %t A194075 z = 70; %t A194075 c[k_] := 1 + Floor[(3/4) k^2]; %t A194075 c = Table[c[k], {k, 1, z}] (* A194073 *) %t A194075 f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] %t A194075 f = Table[f[n], {n, 1, 300}] (* A194074 *) %t A194075 r[n_] := Flatten[Position[f, n]] %t A194075 t[n_, k_] := r[n][[k]] %t A194075 TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]] %t A194075 p = Flatten[ %t A194075 Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194075 *) %t A194075 q[n_] := Position[p, n]; Flatten[ %t A194075 Table[q[n], {n, 1, 90}]] (* A194076 *) %Y A194075 Cf. A194029, A194074, A194073, A194076. %K A194075 nonn,tabl %O A194075 1,2 %A A194075 _Clark Kimberling_, Aug 14 2011