This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194113 #38 Jul 23 2024 10:49:16 %S A194113 3,9,18,30,45,63,85,110,138,169,203,240,281,325,372,422,475,531,591, %T A194113 654,720,789,861,936,1015,1097,1182,1270,1361,1455,1553,1654,1758, %U A194113 1865,1975,2088,2205,2325,2448,2574,2703,2835,2970,3109,3251,3396,3544 %N A194113 a(n) = Sum_{j=1..n} floor(j*sqrt(10)); n-th partial sum of Beatty sequence for sqrt(10). %C A194113 From _Marius A. Burtea_, Aug 22 2018: (Start) %C A194113 a(2) = 9 = 3^2; %C A194113 a(10) = 169 = 13^2; %C A194113 a(76) = 9216 = 96^2; %C A194113 a(783) = 970225 = 985^2; %C A194113 a(5895) = 54952569 = 7413^2; %C A194113 a(187507) = 55591265284 = 235778^2; %C A194113 a(577771) = 527815327081 = 726509^2; %C A194113 ... %C A194113 Does the sequence include an infinite number of perfect squares? (End) %H A194113 G. C. Greubel, <a href="/A194113/b194113.txt">Table of n, a(n) for n = 1..1000</a> %t A194113 Table[Sum[Floor[j*Sqrt[10]], {j, 1, n}], {n, 1, 90}] %o A194113 (PARI) for(n=1,50, print1(sum(k=1,n, floor(k*sqrt(10))), ", ")) \\ _G. C. Greubel_, Sep 24 2017 %o A194113 (Python) %o A194113 from math import isqrt %o A194113 def A194113(n): return sum(isqrt(10*j**2) for j in range(1,n+1)) # _Chai Wah Wu_, Jul 23 2024 %Y A194113 Cf. A177102 (Beatty sequence for sqrt(10)). %K A194113 nonn %O A194113 1,1 %A A194113 _Clark Kimberling_, Aug 16 2011