A194116 a(n) = Sum_{j=1..n} floor(j*sqrt(13)); n-th partial sum of Beatty sequence for sqrt(13).
3, 10, 20, 34, 52, 73, 98, 126, 158, 194, 233, 276, 322, 372, 426, 483, 544, 608, 676, 748, 823, 902, 984, 1070, 1160, 1253, 1350, 1450, 1554, 1662, 1773, 1888, 2006, 2128, 2254, 2383, 2516, 2653, 2793, 2937, 3084, 3235, 3390, 3548, 3710, 3875
Offset: 1
Keywords
Crossrefs
Cf. A171983 (Beatty sequence for sqrt(13)).
Programs
-
Mathematica
c[n_] := Sum[Floor[j*Sqrt[13]], {j, 1, n}]; c = Table[c[n], {n, 1, 90}]
-
Python
from sympy import integer_nthroot def A194116(n): return sum(integer_nthroot(13*j**2,2)[0] for j in range(1,n+1)) # Chai Wah Wu, Mar 17 2021