A194136 T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no three points are collinear at any angle.
1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 17, 45, 15, 0, 0, 6, 105, 105, 21, 0, 0, 0, 114, 407, 210, 28, 0, 0, 0, 39, 843, 1216, 378, 36, 0, 0, 0, 1, 792, 4122, 3036, 630, 45, 0, 0, 0, 0, 244, 7587, 14988, 6696, 990, 55, 0, 0, 0, 0, 9, 6480, 43836, 45414, 13428, 1485, 66, 0, 0, 0, 0
Offset: 1
Examples
Some solutions for n=4, k=4: .....1........0........1........0........0........0........0........0 ....0.0......1.1......1.0......0.1......1.1......1.0......1.1......0.1 ...0.1.0....0.0.1....0.0.0....1.0.0....1.0.0....1.0.1....1.1.0....1.1.0 ..1.0.0.1..1.0.0.0..0.1.1.0..0.1.0.1..0.0.1.0..0.0.1.0..0.0.0.0..0.0.0.1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..267
- S. V. Ullas Chandran, Sandi Klavžar, and James Tuite, The General Position Problem: A Survey, arXiv:2501.19385 [math.CO], 2025. See p. 4.
Comments