This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194148 #15 May 26 2023 13:56:00 %S A194148 1,4,9,16,25,36,49,64,81,100,121,143,167,193,221,251,283,317,353,391, %T A194148 431,473,517,562,609,658,709,762,817,874,933,994,1057,1122,1188,1256, %U A194148 1326,1398,1472,1548,1626,1706,1788,1872,1958,2046,2135,2226,2319 %N A194148 Sum_{j=1..n} floor(j*(1/2 + sqrt(2))); n-th partial sum of Beatty sequence for 1/2 + sqrt(2). %H A194148 G. C. Greubel, <a href="/A194148/b194148.txt">Table of n, a(n) for n = 1..5000</a> %t A194148 c[n_] := Sum[Floor[j*(1/2+Sqrt[2])], {j, 1, n}]; %t A194148 c = Table[c[n], {n, 1, 90}] %t A194148 Accumulate[Table[Floor[n(1/2+Sqrt[2])],{n,50}]] (* _Harvey P. Dale_, May 26 2023 *) %o A194148 (PARI) for(n=1,60, print1(sum(j=1,n, floor(j*(sqrt(2) + 1/2))), ", ")) \\ _G. C. Greubel_, Oct 05 2018 %o A194148 (Magma) [(&+[Floor(k*(Sqrt(2) + 1/2)): k in [1..n]]): n in [1..60]]; // _G. C. Greubel_, Oct 05 2018 %Y A194148 Cf. A137803 (Beatty sequence for 1/2 + sqrt(2)). %K A194148 nonn %O A194148 1,2 %A A194148 _Clark Kimberling_, Aug 17 2011