cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194195 First inverse function (numbers of rows) for pairing function A060734.

This page as a plain text file.
%I A194195 #25 Jun 02 2025 04:15:06
%S A194195 1,2,2,1,3,3,3,2,1,4,4,4,4,3,2,1,5,5,5,5,5,4,3,2,1,6,6,6,6,6,6,5,4,3,
%T A194195 2,1,7,7,7,7,7,7,7,6,5,4,3,2,1,8,8,8,8,8,8,8,8,7,6,5,4,3,2,1,9,9,9,9,
%U A194195 9,9,9,9,9
%N A194195 First inverse function (numbers of rows) for pairing function A060734.
%C A194195 The  sequence is the second inverse function (numbers of columns) for pairing function A060736.
%H A194195 Boris Putievskiy, <a href="/A194195/b194195.txt">Rows n = 1..140 of triangle, flattened</a>
%H A194195 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.
%F A194195 a(n) = min{t; t^2 - n + 1}, where t=floor(sqrt(n-1))+1.
%e A194195 The start of the sequence as triangle array read by rows:
%e A194195 1;
%e A194195 2,2,1;
%e A194195 3,3,3,2,1;
%e A194195 4,4,4,4,3,2,1;
%e A194195 . . .
%e A194195 Row number k contains 2k-1 numbers k,k,...k,k-1,k-2,...1 (k times repetition "k").
%t A194195 f[n_]:=Module[{t=Floor[Sqrt[n-1]]+1},Min[t,t^2-n+1]]; Array[f,80] (* _Harvey P. Dale_, Dec 31 2012 *)
%o A194195 (Python)
%o A194195 t=int(math.sqrt(n-1)) +1
%o A194195 i=min(t,t**2-n+1)
%Y A194195 Cf. A060734, A060736,  A220603, A220604
%K A194195 nonn,tabf
%O A194195 1,2
%A A194195 _Boris Putievskiy_, Dec 21 2012