cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194197 Number of partitions of 60n into parts <= 6.

This page as a plain text file.
%I A194197 #28 Aug 12 2018 19:14:06
%S A194197 1,19858,436140,2897747,11402579,33377536,80758518,171070425,
%T A194197 328507157,585011614,981355696,1568220303,2407275335,3572259692,
%U A194197 5150061274,7241796981,9963892713,13449163370,17847892852,23328914059,30080688891,38312388248,48254972030,60162269137
%N A194197 Number of partitions of 60n into parts <= 6.
%C A194197 Number of partitions of 60n+k, 0<=k<60 into parts <=6 is a polynomial of degree 5 by variable n.
%H A194197 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A194197 a(n) = 1 +(167*n +2325*n^2 +15400*n^3 +47250*n^4 +54000*n^5)/6.
%F A194197 a(n) = A001402(60*n).
%F A194197 G.f.: (3331*x^5+161052*x^4+578757*x^3+317007*x^2+19852*x+1)/(x-1)^6. [_Colin Barker_, Jan 31 2013]
%t A194197 Table[1 + (167n + 2325n^2 + 15400n^3 + 47250n^4 + 54000n^5)/6, {n, 0, 25}]
%t A194197 LinearRecurrence[{6,-15,20,-15,6,-1},{1,19858,436140,2897747,11402579,33377536},30] (* _Harvey P. Dale_, Aug 12 2018 *)
%Y A194197 Cf. A001402.
%K A194197 nonn,easy
%O A194197 0,2
%A A194197 _Adi Dani_, Aug 21 2011