This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194200 #13 Dec 12 2024 11:14:21 %S A194200 0,1,1,2,2,3,3,3,4,4,5,6,6,6,7,7,7,8,9,9,9,10,11,11,12,13,13,13,14,15, %T A194200 15,16,16,17,17,18,18,19,19,19,20,20,21,22,22,22,23,23,23,24,25,25,25, %U A194200 26,27,27,28,28,29,29,30,30,31,32,32,33,33,34,34,34,35,36,37 %N A194200 [sum{(k*e) : 1<=k<=n}], where [ ]=floor, ( )=fractional part. %C A194200 The defining [sum] is equivalent to %C A194200 ... %C A194200 a(n)=[n(n+1)r/2]-sum{[k*r] : 1<=k<=n}, %C A194200 ... %C A194200 where []=floor and r=sqrt(2). Let s(n) denote the n-th partial sum of the sequence a; then the difference sequence d defined by d(n)=s(n+1)-s(n) gives the runlengths of a. %C A194200 ... %C A194200 Examples: %C A194200 ... %C A194200 r...........a........s.... %C A194200 1/2......A002265...A001972 %C A194200 1/3......A002264...A001840 %C A194200 2/3......A002264...A001840 %C A194200 1/4......A194220...A194221 %C A194200 1/5......A194222...A118015 %C A194200 2/5......A057354...A011858 %C A194200 3/5......A194222...A118015 %C A194200 4/5......A057354...A011858 %C A194200 1/6......A194223...A194224 %C A194200 3/7......A057357...A194229 %C A194200 1/8......A194235...A194236 %C A194200 3/8......A194237...A194238 %C A194200 sqrt(2)..A194161...A194162 %C A194200 sqrt(3)..A194163...A194164 %C A194200 sqrt(5)..A194169...A194170 %C A194200 sqrt(6)..A194173...A194174 %C A194200 tau......A194165...A194166; tau=(1+sqrt(5))/2 %C A194200 e........A194200...A194201 %C A194200 2e.......A194202...A194203 %C A194200 e/2......A194204...A194205 %C A194200 pi.......A194206...A194207 %H A194200 G. C. Greubel, <a href="/A194200/b194200.txt">Table of n, a(n) for n = 1..5000</a> %e A194200 a(5)=[(e)+(2e)+(3e)+4(e)+5(e)] %e A194200 =[.718+.436+.154+.873+.591] %e A194200 =[2.77423]=2. %t A194200 r = E; %t A194200 a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]] %t A194200 Table[a[n], {n, 1, 90}] (* A194200 *) %t A194200 s[n_] := Sum[a[k], {k, 1, n}] %t A194200 Table[s[n], {n, 1, 100}] (* A194201 *) %Y A194200 Cf. A194201. %K A194200 nonn %O A194200 1,4 %A A194200 _Clark Kimberling_, Aug 19 2011