This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194261 #22 May 30 2015 22:12:30 %S A194261 1,2,3,5,7,11,1,1,1,1,1,1,101,1,1,1,1,1,1,19,1,167,251,1,89,29,43,13, %T A194261 83,467,311,23,1,1231,41,17977,281,1,1,127,193,2417,71,31,1087,73,67, %U A194261 7013,631,9283,661,53,5237,17,227,47,102359,3251,199,139,971,2273 %N A194261 Smallest prime that divides the n-th partition number p(n) but does not divide p(1)*p(2)*...*p(n-1), or 1 if none. %C A194261 It appears that a(n) is prime for all n > 97. See A194259 and A194260 for additional comments and links. %H A194261 Alois P. Heinz and Giovanni Resta, <a href="/A194261/b194261.txt">Table of n, a(n) for n = 1..10000</a> (first 2000 terms from Alois P. Heinz) %p A194261 with(combinat): with(numtheory): %p A194261 b:= proc(n) option remember; %p A194261 `if`(n=1, {}, b(n-1) union factorset(numbpart(n))) %p A194261 end: %p A194261 m:= proc(n) option remember; min((b(n) minus b(n-1))[]) end: %p A194261 a:= n-> `if`(n=1, 1, `if`(m(n)=infinity, 1, m(n))): %p A194261 seq(a(n), n=1..120); # _Alois P. Heinz_, Aug 21 2011 %t A194261 a[n_] := Complement[FactorInteger[PartitionsP[n]][[All, 1]], FactorInteger[Product[PartitionsP[k], {k, 1, n-1}]][[All, 1]]] /. {} -> {1} // First; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jan 28 2014 *) %Y A194261 Cf. A000041, A194259, A194260, A194262. %K A194261 nonn,look %O A194261 1,2 %A A194261 _Jonathan Sondow_, Aug 20 2011