This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194275 #60 Jun 29 2025 21:23:54 %S A194275 0,1,5,10,16,25,35,46,60,75,91,110,130,151,175,200,226,255,285,316, %T A194275 350,385,421,460,500,541,585,630,676,725,775,826,880,935,991,1050, %U A194275 1110,1171,1235,1300,1366,1435,1505,1576,1650,1725,1801,1880,1960,2041,2125 %N A194275 Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6). %C A194275 Quasipolynomial: trisections are (15*x^2 - 15*x + 2)/2, 5*(15*x^2 - 5*x)/2, and 5*(15*x^2 + 5*x)/2. - _Charles R Greathouse IV_, Aug 23 2011 %C A194275 Appears to be similar to cellular automaton. The sequence gives the number of elements in the structure after n-th stage. Positive integers of A008854 gives the first differences. For a definition without words see the illustration of initial terms in the example section. %C A194275 Also partial sums of A008854. %C A194275 Also row sums of an infinite square array T(n,k) in which column k lists 3*k-1 zeros followed by the numbers A008706 (see example). %C A194275 For concentric pentagonal numbers see A032527. - _Omar E. Pol_, Sep 27 2011 %H A194275 Vincenzo Librandi, <a href="/A194275/b194275.txt">Table of n, a(n) for n = 0..10000</a> %H A194275 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1). %F A194275 G.f.: (-1 - 3*x - x^2)/((-1 + x)^3*(1 + x + x^2)). - _Alexander R. Povolotsky_, Aug 22 2011 %F A194275 a(n) = floor(5*n*(n+1)/6). - _Arkadiusz Wesolowski_, Aug 23 2011 %e A194275 Using the numbers A008706 we can write: %e A194275 0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ... %e A194275 0, 0, 0, 0, 1, 5, 10, 15, 20, 25, 30, ... %e A194275 0, 0, 0, 0, 0, 0, 0, 1, 5, 10, 15, ... %e A194275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ... %e A194275 And so on. %e A194275 =========================================== %e A194275 The sums of the columns give this sequence: %e A194275 0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ... %e A194275 ... %e A194275 Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric): %e A194275 . o %e A194275 . o o %e A194275 . o o o %e A194275 . o o o o o %e A194275 . o o o o o o o %e A194275 . o o o o o o o o o %e A194275 . o o o o o o o %e A194275 . o o o o o o o o %e A194275 . o o o o o o o o o o o o o o o %e A194275 . %e A194275 . 1 5 10 16 25 %t A194275 Table[Floor[5 n (n + 1)/6], {n, 0, 50}] (* _Arkadiusz Wesolowski_, Oct 03 2011 *) %o A194275 (PARI) a(n)=5*n*(n+1)\6 \\ _Charles R Greathouse IV_, Aug 23 2011 %o A194275 (Magma) [Floor(5*n*(n+1)/6): n in [0..60]]; // Vincenzo Librandi, Sep 27 2011 %Y A194275 Cf. A000326, A008706, A008854, A032528, A152734, A193273, A193274. %Y A194275 Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in A281026. %K A194275 nonn,easy %O A194275 0,3 %A A194275 _Omar E. Pol_, Aug 20 2011 %E A194275 Name improved by _Arkadiusz Wesolowski_, Aug 23 2011 %E A194275 New name from _Omar E. Pol_, Sep 28 2011