This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194280 #30 Feb 15 2022 12:58:20 %S A194280 1,2,5,3,6,9,13,8,4,7,12,18,25,19,14,10,15,20,26,33,41,32,24,17,11,16, %T A194280 23,31,40,50,61,51,42,34,27,21,28,35,43,52,62,73,85,72,60,49,39,30,22, %U A194280 29,38,48,59,71,84,98,113 %N A194280 Inverse permutation to A081344. %C A194280 Permutation of the natural numbers. %C A194280 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A194280 Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). This sequence is A188568 as table read layer by layer clockwise. %C A194280 The same table A188568 read by boustrophedon ("ox-plowing") method - layer clockwise, layer counterclockwise and so on - is A064790. - _Boris Putievskiy_, Mar 14 2013 %H A194280 Boris Putievskiy, <a href="/A194280/b194280.txt">Rows n = 1..140 of triangle, flattened</a> %H A194280 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %H A194280 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A194280 a(n) = (i+j-1)*(i+j-2)/2+j, where %F A194280 i = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1} %F A194280 j = mod(t;2)*min{t; t^2 - n + 1} + mod(t + 1; 2)*min{t; n - (t - 1)^2}, %F A194280 t = int(math.sqrt(n-1))+1. %e A194280 From _Boris Putievskiy_, Mar 14 2013: (Start) %e A194280 The start of the sequence as table: %e A194280 1....2...6...7..15..16..28... %e A194280 3....5...9..12..20..23..35... %e A194280 4....8..13..18..26..31..43... %e A194280 10..14..19..25..33..40..52... %e A194280 11..17..24..32..41..50..62... %e A194280 21..27..34..42..51..61..73... %e A194280 22..30..39..49..60..72..85... %e A194280 ... %e A194280 The start of the sequence as triangular array read by rows: %e A194280 1; %e A194280 2,5,3; %e A194280 6,9,13,8,4; %e A194280 7,12,18,25,19,14,10; %e A194280 15,20,26,33,41,32,24,17,11; %e A194280 16,23,31,40,50,61,51,42,34,27,21; %e A194280 28,35,43,52,62,73,85,72,60,49,39,30,22; %e A194280 ... %e A194280 Row number r contains 2*r-1 numbers. (End) %o A194280 (Python) %o A194280 t=int(math.sqrt(n-1))+1 %o A194280 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1) %o A194280 j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2) %o A194280 m=(i+j-1)*(i+j-2)/2+j %Y A194280 Cf. A081344, A064790, A188568. %K A194280 nonn %O A194280 1,2 %A A194280 _Boris Putievskiy_, Dec 23 2012