cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194280 Inverse permutation to A081344.

This page as a plain text file.
%I A194280 #30 Feb 15 2022 12:58:20
%S A194280 1,2,5,3,6,9,13,8,4,7,12,18,25,19,14,10,15,20,26,33,41,32,24,17,11,16,
%T A194280 23,31,40,50,61,51,42,34,27,21,28,35,43,52,62,73,85,72,60,49,39,30,22,
%U A194280 29,38,48,59,71,84,98,113
%N A194280 Inverse permutation to A081344.
%C A194280 Permutation of the natural numbers.
%C A194280 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
%C A194280 Call a "layer" a pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). This sequence is A188568 as table read layer by layer clockwise.
%C A194280 The same table A188568 read  by boustrophedon ("ox-plowing") method - layer clockwise, layer counterclockwise and so on - is A064790. - _Boris Putievskiy_, Mar 14 2013
%H A194280 Boris Putievskiy, <a href="/A194280/b194280.txt">Rows n = 1..140 of triangle, flattened</a>
%H A194280 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%H A194280 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A194280 a(n) = (i+j-1)*(i+j-2)/2+j, where
%F A194280 i = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1}
%F A194280 j = mod(t;2)*min{t; t^2 - n + 1} + mod(t + 1; 2)*min{t; n - (t - 1)^2},
%F A194280 t = int(math.sqrt(n-1))+1.
%e A194280 From _Boris Putievskiy_, Mar 14 2013: (Start)
%e A194280 The start of the sequence as table:
%e A194280   1....2...6...7..15..16..28...
%e A194280   3....5...9..12..20..23..35...
%e A194280   4....8..13..18..26..31..43...
%e A194280   10..14..19..25..33..40..52...
%e A194280   11..17..24..32..41..50..62...
%e A194280   21..27..34..42..51..61..73...
%e A194280   22..30..39..49..60..72..85...
%e A194280   ...
%e A194280 The start of the sequence as triangular array read by rows:
%e A194280   1;
%e A194280   2,5,3;
%e A194280   6,9,13,8,4;
%e A194280   7,12,18,25,19,14,10;
%e A194280   15,20,26,33,41,32,24,17,11;
%e A194280   16,23,31,40,50,61,51,42,34,27,21;
%e A194280   28,35,43,52,62,73,85,72,60,49,39,30,22;
%e A194280   ...
%e A194280 Row number r contains 2*r-1 numbers. (End)
%o A194280 (Python)
%o A194280 t=int(math.sqrt(n-1))+1
%o A194280 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
%o A194280 j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)
%o A194280 m=(i+j-1)*(i+j-2)/2+j
%Y A194280 Cf. A081344, A064790, A188568.
%K A194280 nonn
%O A194280 1,2
%A A194280 _Boris Putievskiy_, Dec 23 2012