This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194285 #11 Sep 26 2017 11:14:51 %S A194285 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,0,1,1,1,1,1,1,1,1,1,1,2,0,1, %T A194285 1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,2,0,1,1,2,0,1,1,1,1,1,1,1,1,1,2,0,1,1, %U A194285 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,2,1,1,1,1,1,1,1,1,1,0,1,1,2,1,1,0 %N A194285 Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n. %C A194285 Row n of A194285 counts fractional parts (i*r), for i=1,2,...,n, in each of the intervals indicated. It is of interest to count (i*r) for i=1,2,...,s(n) for various choices of s(n), such as 2n, n^2, and 2^n. In each case, (n-th row sum)=s(n). Examples: %C A194285 ... %C A194285 r.................s(n)....g(n,k) %C A194285 sqrt(2)...........n.......A194285 %C A194285 sqrt(2)...........2n......A194286 %C A194285 sqrt(2)...........n^2.....A194287 %C A194285 sqrt(2)...........2^n.....A194288 %C A194285 sqrt(3)...........n.......A194289 %C A194285 sqrt(3)...........2n......A194290 %C A194285 sqrt(3)...........n^2.....A194291 %C A194285 sqrt(3)...........2^n.....A194292 %C A194285 tau...............n.......A194293, tau=(1+sqrt(5))/2 %C A194285 tau...............2n......A194294 %C A194285 tau...............n^2.....A194295 %C A194285 tau...............2^n.....A194296 %C A194285 (-1+sqrt(3))/2....n.......A194297 %C A194285 (-1+sqrt(3))/2....2n......A194298 %C A194285 (-1+sqrt(3))/2....n^2.....A194299 %C A194285 (-1+sqrt(3))/2....2^n.....A194300 %C A194285 sqrt(5)...........n.......A194301 %C A194285 sqrt(5)...........2n......A194302 %C A194285 sqrt(5)...........n^2.....A194303 %C A194285 sqrt(5)...........2^n.....A194304 %C A194285 pi................n.......A194305 %C A194285 pi................2n......A194306 %C A194285 pi................n^2.....A194307 %C A194285 pi................2^n.....A194308 %C A194285 e.................n.......A194309 %C A194285 e.................2n......A194310 %C A194285 e.................n^2.....A194311 %C A194285 e.................2^n.....A194312 %C A194285 sqrt(6)...........n.......A194313 %C A194285 sqrt(6)...........2n......A194314 %C A194285 sqrt(6)...........n^2.....A194315 %C A194285 sqrt(6)...........2^n.....A194316 %C A194285 sqrt(8)...........n.......A194317 %C A194285 sqrt(8)...........2n......A194318 %C A194285 sqrt(8)...........n^2.....A194319 %C A194285 sqrt(8)...........2^n.....A194320 %C A194285 sqrt(1/2).........n.......A194321 %C A194285 sqrt(1/2).........2n......A194322 %C A194285 sqrt(1/2).........n^2.....A194323 %C A194285 sqrt(1/2).........2^n.....A194324 %C A194285 2-sqrt(2).........n.......A194325 %C A194285 2-sqrt(2).........2n......A194326 %C A194285 2-sqrt(2).........n^2.....A194327 %C A194285 2-sqrt(2).........2^n.....A194328 %C A194285 2-sqrt(3).........n.......A194329 %C A194285 2-sqrt(3).........2n......A194330 %C A194285 2-sqrt(3).........n^2.....A194331 %C A194285 2-sqrt(3).........2^n.....A194332 %C A194285 2-tau.............n.......A194333 %C A194285 2-tau.............2n......A194334 %C A194285 2-tau.............n^2.....A194335 %C A194285 2-tau.............2^n.....A194336 %C A194285 3-sqrt(5).........n.......A194337 %C A194285 3-sqrt(5).........2n......A194338 %C A194285 3-sqrt(5).........n^2.....A194339 %C A194285 3-sqrt(5).........2^n.....A194340 %C A194285 3-e...............n.......A194341 %C A194285 3-e...............2n......A194342 %C A194285 3-e...............n^2.....A194343 %C A194285 3-e...............2^n.....A194344 %C A194285 ... %C A194285 Questions for each such triangle: %C A194285 (1) Which rows are constant? %C A194285 (2) Maximal number of distinct numbers per row? %D A194285 Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, pages 23-45. %H A194285 Ronald L. Graham, Shen Lin, Chio-Shih Lin, <a href="http://www.jstor.org/stable/2689998">Spectra of numbers</a>, Math. Mag. 51 (1978), 174-176. %e A194285 1 %e A194285 1..1 %e A194285 1..1..1 %e A194285 1..1..1..1 %e A194285 1..1..1..1..1 %e A194285 1..1..2..1..1..0 %e A194285 1..1..1..1..1..1..1 %e A194285 1..1..1..2..0..1..1..1 %e A194285 Take n=6, r=sqrt(2): %e A194285 (r)=-1+r=0.41412... in [2/6,3/6) %e A194285 (2r)=-2+2r=0.828... in [4/6,5/6) %e A194285 (3r)=-4+3r=0.242... in [1/6,2/6) %e A194285 (4r)=-5+4r=0.656... in [3/6,4/6) %e A194285 (5r)=-7+5r=0.071... in [0/6,1/6) %e A194285 (6r)=-8+6r=0.485... in [2/6,3/6), %e A194285 so that row 6 is 1..1..2..1..1..0. %t A194285 r = Sqrt[2]; %t A194285 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] %t A194285 g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] %t A194285 TableForm[Table[g[n, k], {n, 1, 20}, {k, 1, n}]] %t A194285 Flatten[%] (* A194285 *) %Y A194285 Cf. A194286, A194287, A194288. %K A194285 nonn,tabl %O A194285 1,18 %A A194285 _Clark Kimberling_, Aug 21 2011