A194286 Triangular array: g(n,k)=number of fractional parts (i*sqrt(2)) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n.
2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 1, 3, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
First eight rows: 2 2..2 2..3..1 2..3..1..2 2..2..2..2..2 2..2..2..2..2..2 2..1..3..2..1..3..2 1..3..1..3..1..3..2..2
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Sqrt[2]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2 n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194286 *)
Comments