A194289 Triangular array: g(n,k)=number of fractional parts (i*sqrt(3)) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
First eight rows: 1 1..1 1..1..1 1..1..1..1 1..0..1..2..1 0..1..2..1..1..1 1..1..1..1..1..1..1 1..1..0..2..0..2..1..1
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Sqrt[3]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194289 *)
Comments