A194294 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=2n, r=(1+sqrt(5))/2, the golden ratio.
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2
Offset: 1
Examples
First nine rows: 2 2..2 2..2..2 2..2..2..2 2..2..2..2..2 1..3..2..2..2..2 2..2..2..2..3..2..1 2..2..2..2..2..2..2..2 2..2..3..1..2..3..1..3..1
Programs
-
Mathematica
r = GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194294 *)
Comments