A194295 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n^2, r=(1+sqrt(5))/2, the golden ratio.
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 5, 5, 6, 7, 5, 7, 6, 5, 7, 8, 6, 7, 8, 7, 6, 8, 8, 8, 7, 9, 8, 8, 8, 9, 9, 9, 9, 9, 10, 8, 10, 8, 10, 10, 10, 10, 10, 10, 9, 11, 10, 10, 11, 11, 11, 11, 10, 11, 12, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13
Offset: 1
Examples
First eight rows: 1 2..2 3..3..3 4..4..4..4 4..5..6..5..5 6..7..5..7..6..5 7..8..6..7..8..7..6 8..8..8..7..9..8..8..8
Crossrefs
Cf. A194295.
Programs
-
Mathematica
r = GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194295 *)
Comments