cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194296 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=2^n, r=(1+sqrt(5))/2, the golden ratio.

This page as a plain text file.
%I A194296 #5 Mar 30 2012 18:57:42
%S A194296 2,2,2,3,2,3,4,4,4,4,6,6,7,7,6,10,11,10,12,10,11,19,19,17,19,19,17,18,
%T A194296 32,33,32,31,33,32,31,32,57,57,57,56,57,58,56,58,56,102,102,103,102,
%U A194296 102,103,102,103,103,102,187,186,187,185,185,186,187,187,186,187
%N A194296 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=2^n, r=(1+sqrt(5))/2, the golden ratio.
%C A194296 See A194285.
%e A194296 First seven rows:
%e A194296 2
%e A194296 2...2
%e A194296 3...2...3
%e A194296 4...4...4...4
%e A194296 6...6...7...7...6
%e A194296 10..11..10..12..10..11
%e A194296 19..19..17..19..19..17..18
%t A194296 r = GoldenRatio;
%t A194296 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t A194296 g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]
%t A194296 TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t A194296 Flatten[%]    (* A194296 *)
%Y A194296 Cf. A194285.
%K A194296 nonn,tabl
%O A194296 1,1
%A A194296 _Clark Kimberling_, Aug 21 2011