cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194300 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=(1+sqrt(3))/2.

This page as a plain text file.
%I A194300 #5 Mar 30 2012 18:57:42
%S A194300 2,3,1,2,3,3,4,5,3,4,6,7,6,7,6,11,11,12,9,11,10,19,17,19,19,17,20,17,
%T A194300 32,32,33,32,32,32,32,31,58,56,57,57,57,57,57,57,56,103,102,102,103,
%U A194300 103,102,101,103,103,102,186,187,185,186,187,187,185,186,187,187
%N A194300 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=(1+sqrt(3))/2.
%C A194300 See A194285.
%e A194300 First six rows:
%e A194300 2
%e A194300 3..1
%e A194300 2..3..3
%e A194300 4..5..3..4
%e A194300 6..7..6..7..6
%e A194300 11..11..12..9...11..10
%t A194300 r = (1+Sqrt[3])/2;
%t A194300 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t A194300 g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]
%t A194300 TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t A194300 Flatten[%]    (* A194300 *)
%Y A194300 Cf. A194285.
%K A194300 nonn,tabl
%O A194300 1,1
%A A194300 _Clark Kimberling_, Aug 21 2011