A194305 Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= n, 1 <= k <= n.
1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 2, 0, 1, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 0, 2, 0, 2, 0, 2, 0, 2
Offset: 1
Examples
First eleven rows: 1; 2, 0; 2, 1, 0; 1, 2, 1, 0; 1, 1, 2, 1, 0; 1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1; 0, 2, 1, 1, 1, 1, 1, 1; 0, 2, 2, 1, 0, 1, 1, 1, 1; 0, 2, 2, 0, 2, 1, 0, 1, 1, 1; 0, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1;
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Pi; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194305 *)
Comments