A194308 Triangular array: g(n,k) = number of fractional parts (i*Pi) in interval [(k-1)/n, k/n], for 1 <= i <= 2^n, 1 <= k <= n.
2, 3, 1, 3, 2, 3, 3, 5, 4, 4, 5, 7, 8, 4, 8, 10, 9, 10, 12, 12, 11, 19, 18, 18, 18, 18, 18, 19, 31, 31, 32, 32, 32, 32, 32, 34, 53, 58, 55, 61, 55, 57, 53, 60, 60, 99, 100, 100, 108, 100, 100, 108, 100, 100, 109, 180, 182, 180, 200, 182, 180, 182, 200, 180, 182
Offset: 1
Examples
First six rows: 2; 3, 1; 3, 2, 3; 3, 5, 4, 4; 5, 7, 8, 4, 8; 10, 9, 10, 12, 12, 11;
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Pi; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194308 *)
Comments