cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194309 Triangular array: g(n,k)=number of fractional parts (i*e) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.

This page as a plain text file.
%I A194309 #5 Mar 30 2012 18:57:42
%S A194309 1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,
%T A194309 1,0,1,1,1,1,1,1,2,1,0,1,2,0,1,2,1,0,2,1,0,1,1,1,1,1,1,1,1,1,2,0,1,1,
%U A194309 1,1,0,2,0,2,2,0,2,0,1,0,2,0,2,1,1,1,1,2,0,2,0,2,0,2,0,2,0,2,0
%N A194309 Triangular array:  g(n,k)=number of fractional parts (i*e) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n.
%C A194309 See A194285.
%e A194309 1
%e A194309 1..1
%e A194309 1..1..1
%e A194309 1..1..1..1
%e A194309 1..0..2..1..1
%e A194309 1..1..1..1..1..1
%e A194309 1..1..1..1..1..1..1
%e A194309 1..1..1..1..1..2..1..0
%t A194309 r = E;
%t A194309 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t A194309 g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]
%t A194309 TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t A194309 Flatten[%]    (* A194309 *)
%Y A194309 Cf. A194285.
%K A194309 nonn,tabl
%O A194309 1,13
%A A194309 _Clark Kimberling_, Aug 21 2011