cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194316 Triangular array: g(n,k)=number of fractional parts (i*sqrt(6)) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.

This page as a plain text file.
%I A194316 #8 Aug 08 2025 05:00:18
%S A194316 2,2,2,2,3,3,4,5,3,4,6,7,7,6,6,9,11,12,9,12,11,18,18,18,19,19,18,18,
%T A194316 31,33,32,33,30,33,31,33,56,57,57,58,57,56,57,57,57,103,102,103,103,
%U A194316 103,101,102,102,103,102,186,186,186,186,187,186,186,186,186,187,186
%N A194316 Triangular array: g(n,k)=number of fractional parts (i*sqrt(6)) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.
%C A194316 See A194285.
%e A194316 First eight rows:
%e A194316   2
%e A194316   2   2
%e A194316   2   3   3
%e A194316   4   5   3   4
%e A194316   6   7   7   6   6
%e A194316   9   11  12  9   12  11
%e A194316   18  18  18  19  19  18  18
%e A194316   31  33  32  33  30  33  31  33
%t A194316 r = Sqrt[6];
%t A194316 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t A194316 g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}]
%t A194316 TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t A194316 Flatten[%]    (* A194316 *)
%Y A194316 Cf. A194285.
%K A194316 nonn,tabl
%O A194316 1,1
%A A194316 _Clark Kimberling_, Aug 21 2011