A194320 Triangular array: g(n,k)=number of fractional parts (i*sqrt(8)) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.
2, 2, 2, 2, 3, 3, 2, 6, 3, 5, 6, 6, 7, 7, 6, 11, 10, 11, 11, 11, 10, 19, 18, 18, 18, 18, 19, 18, 31, 32, 32, 33, 31, 32, 32, 33, 56, 57, 58, 55, 57, 58, 56, 58, 57, 102, 102, 101, 104, 103, 102, 103, 102, 103, 102, 185, 186, 185, 186, 186, 186, 187, 186, 187, 187
Offset: 1
Examples
First eight rows: 2 2...2 2...3...3 2...6...3...5 6...6...7...7...6 11..10..11..11..11..10 19..18..18..18..18..19..18 31..32..32..33..31..32..32..33
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Sqrt[8]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194320 *)
Comments