A194324 Triangular array: g(n,k)=number of fractional parts (i*sqrt(1/2)) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n.
2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 6, 6, 6, 8, 6, 11, 10, 11, 11, 11, 10, 19, 18, 18, 19, 18, 19, 17, 33, 32, 31, 32, 32, 32, 32, 32, 56, 58, 57, 57, 57, 56, 57, 56, 58, 103, 102, 102, 103, 102, 102, 103, 103, 102, 102, 186, 186, 188, 184, 188, 186, 185, 187, 186, 186
Offset: 1
Examples
First eight rows: 2 2...2 2...3...3 4...4...4...4 6...6...6...8...6 11..10..11..11..11..10 19..18..18..19..18..19..17 33..32..31..32..32..32..32..32
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = Sqrt[1/2]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194324 *)
Comments