A194327 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=2-sqrt(2).
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 4, 6, 6, 5, 7, 6, 6, 7, 7, 6, 7, 8, 7, 7, 7, 8, 9, 7, 9, 8, 7, 9, 9, 9, 9, 9, 9, 9, 10, 9, 8, 9, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13
Offset: 1
Examples
First eight rows: 1 2..2 3..3..3 4..4..4..4 5..5..5..6..4 6..6..5..7..6..6 7..7..6..7..8..7..7 7..8..9..7..9..8..7..9
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = 2-Sqrt[2]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194327 *)
Comments