cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194331 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=2-sqrt(3).

This page as a plain text file.
%I A194331 #5 Mar 30 2012 18:57:43
%S A194331 1,2,2,3,4,2,4,5,3,4,5,5,5,5,5,7,5,6,7,6,5,7,7,7,7,7,7,7,8,8,9,7,9,7,
%T A194331 8,8,10,9,8,10,9,9,9,9,8,10,9,11,10,9,11,10,10,10,10,11,11,11,12,11,
%U A194331 11,12,10,11,11,10,13,11,12,13,11,12,13,12,11,13,12,11,13,13,13
%N A194331 Triangular array:  g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=2-sqrt(3).
%C A194331 See A194285.
%e A194331 First eight rows:
%e A194331 1
%e A194331 2..2
%e A194331 3..4..2
%e A194331 4..5..3..4
%e A194331 5..5..5..5..5
%e A194331 7..5..6..7..6..5
%e A194331 7..7..7..7..7..7..7
%e A194331 8..8..9..7..9..7..8..8
%t A194331 r = 2-Sqrt[3];
%t A194331 f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]
%t A194331 g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}]
%t A194331 TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]
%t A194331 Flatten[%]    (* A194331 *)
%Y A194331 Cf. A194285.
%K A194331 nonn,tabl
%O A194331 1,2
%A A194331 _Clark Kimberling_, Aug 22 2011