A194332 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=2-sqrt(3).
2, 2, 2, 3, 3, 2, 4, 5, 3, 4, 6, 7, 7, 6, 6, 12, 10, 10, 12, 10, 10, 18, 19, 19, 18, 18, 18, 18, 32, 31, 34, 31, 33, 31, 32, 32, 57, 58, 57, 57, 56, 57, 57, 57, 56, 103, 102, 103, 103, 102, 103, 102, 101, 104, 101, 186, 186, 187, 187, 186, 186, 186, 186, 186, 186
Offset: 1
Examples
First eight rows: 2 2...2 3...3...2 4...5...3...4 6...7...7...6...6 12..10..10..12..10..10 18..19..19..18..18..18..18 32..31..34..31..33..31..32..32
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = 2-Sqrt[3]; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194332 *)
Comments