A194333 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 1, 1, 1
Offset: 1
Examples
First eleven rows: 1 1..1 1..1..1 1..1..1..1 1..1..1..1..1 1..1..1..1..1..1 0..1..2..1..1..1..1 1..1..1..1..1..1..1..1 1..1..1..2..1..0..2..0..1 1..1..1..1..1..1..1..1..1..1 1..1..1..1..2..1..0..1..1..1..1
Crossrefs
Cf. A194333.
Programs
-
Mathematica
r = 2-GolenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194333 *)
Comments