A194334 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2n, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1, 3, 2, 2, 2
Offset: 1
Examples
First nine rows: 2 2..2 2..2..2 2..2..2..2 2..2..2..2..2 2..2..2..2..3..1 1..2..3..2..2..2..2 2..2..2..2..2..2..2..2 1..3..1..3..2..1..3..2..2
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = 2-GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194334 *)
Comments