A194335 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n^2, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 5, 4, 5, 6, 7, 5, 7, 6, 6, 7, 8, 7, 6, 8, 7, 8, 8, 8, 9, 7, 8, 8, 8, 8, 10, 8, 10, 9, 9, 9, 9, 9, 10, 10, 11, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 11, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13
Offset: 1
Examples
First eight rows: 1 2..2 3..3..3 4..4..4..4 5..5..6..5..4 5..6..7..5..7..6 6..7..8..7..6..8..7 8..8..8..9..7..8..8..8
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = 2-GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, n^2}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194335 *)
Comments