A194336 Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=2^n, 1<=k<=n, r=2-tau, where tau=(1+sqrt(5))/2, the golden ratio.
2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 6, 7, 7, 6, 6, 11, 10, 12, 10, 11, 10, 18, 17, 19, 19, 17, 19, 19, 32, 31, 32, 33, 31, 32, 33, 32, 56, 58, 56, 58, 57, 56, 57, 57, 57, 102, 103, 103, 102, 103, 102, 102, 103, 102, 102, 185, 187, 186, 187, 187, 186, 185, 185, 187, 186
Offset: 1
Examples
First eight rows: 2 2...2 3...2...3 4...4...4...4 6...7...7...6...6 11..10..12..10..11..10 18..17..19..19..17..19..19 32..31..32..33..31..32..33..32
Crossrefs
Cf. A194285.
Programs
-
Mathematica
r = 2-GoldenRatio; f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0] g[n_, k_] := Sum[f[n, k, i], {i, 1, 2^n}] TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]] Flatten[%] (* A194336 *)
Comments